Digital generation of partially coherent vortex beams

BENJAMIN PEREZ-GARCIA,1,2 ADAD YEPIZ,1 RAUL I. HERNANDEZ-ARANDA,1,* ANDREW FORBES,2 AND GROVER A. SWARTZLANDER, JR.3
1Photons and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849, Mexico
2University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
3Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, New York 14623, USA
*Corresponding author: raul.aranda@itesm.mx

Received 9 June 2016; accepted 23 June 2016; posted 29 June 2016 (Doc. ID 267984); published 20 July 2016

We present an experimental technique to generate partially coherent vortex beams with an arbitrary azimuthal index using only a spatial light modulator. Our approach is based on digitally simulating the intrinsic randomness of broadband light passing through a spiral phase plate. We illustrate the versatility of the technique by generating partially coherent beams with different coherence lengths and orbital angular momentum content, without any moving optical device. Consequently, we study its cross-correlation function in a wavefront folding interferometer. The comparison with theoretical predictions yields excellent agreement. © 2016 Optical Society of America

OCIS codes: (030.1640) Coherence; (050.4865) Optical vortices.
http://dx.doi.org/10.1364/OL.41.003471

Optical beams that possess the helicoidal phase of the form $\exp(il\theta)$ are known as optical vortices (OVs) and carry an orbital angular momentum (OAM) of $il\hbar$ per photon [1–3], where the index l is the topological charge. Many interesting applications arise from the study of OVs, for instance, optical tweezers and micromanipulation [4–6], optical communications [7,8], and quantum information [9–12]. However, many of these applications are found in the highly spatially coherent regime, leaving aside the partially coherent nature of light.

The theory of coherence has been extensively explored in the past [13,14]. In our study, we are interested in the transverse spatial coherence, which can be described as the capability that two separate points in space at the same z-plane have to interfere. Physically, this can be realized by an extended source in which each point emits light independently with no fixed-phase relationship between the points. The coherence properties of the field produced by this kind of source are mainly studied through the correlation functions of the optical field [15,16]. In particular, the cross-correlation function (CCF) of a partially coherent vortex beam has been shown to possess a ring dislocation related to the transverse extent of the source [17,18]—in contrast to the characteristic doughnut shape observed in the intensity profile of a highly coherent vortex beam.

There are many ways to experimentally generate partially coherent OVs. For instance, broadband white light passing through a spiral phase plate seems the natural way to create them [19]. Another method involves the focusing of laser light onto a rotating ground-glass disk, which is then redirected onto a spatial light modulator (SLM) displaying a fork-like hologram [20,21]. Partially coherent Bessel beams have also been generated through Gerchberg and Saxton holograms [22] and by noninterferometric techniques [23]. In all cases, controlling the coherence is not a straightforward task and, in some instances, it is achieved by moving specific optical elements, i.e., lenses or apertures. In this Letter we propose an all-digital technique to construct partially coherent OVs by using only an SLM, where we can easily select the OAM and spatial coherence quantitatively.

We begin our analysis with a homogeneously polarized fully coherent vortex beam at the plane $z = 0$ [3,24], with its center located at $(x, y) = (0, 0)$, given by

$$u_l(x, y) = (r/w_0)^l \exp(-r^2/w_0^2) \exp(il\theta),$$

where $r = \sqrt{x^2 + y^2}$ is the radial coordinate, $\theta = \tan^{-1}(y/x)$ is the azimuthal angle, w_0 is the waist of the Gaussian envelope, and l is the topological charge. In order to represent a partially coherent optical vortex, we construct a field at any point on the xy plane as the ensemble average of randomly displaced beams having random phases. Each member of the ensemble has amplitude and phase profiles that are constructed by the coherent superposition of N vortex beams of the form given by Eq. (1), and whose centers are uniformly distributed at random locations within a finite circle as shown in Fig. 1. In this way, we can express a member of the ensemble as

$$E_k(x, y) = \sum_{j=0}^{N} u_j(x - a_jy - b_j) \exp(i\phi_j),$$

where the coordinates (a_j, b_j) are random numbers uniformly distributed within a circle of radius c and represent the locations of each of the individual randomly located vortices. As can be seen in Eq. (2), each of the individual vortices u_j is also
multiplied by a random phase term $\exp(i\phi_j)$, in which ϕ_j is uniformly randomly distributed between 0 and 2π. The field expressed in Eq. (2) represents a member of the ensemble and can be experimentally generated by means of an SLM. In order to construct the full ensemble, a sequence of computer-generated holograms (CGHs) of such fields is sent to the SLM with a different CGH for each frame. The partially co-generated holograms (CGHs) of such fields is sent to the detector; this is done through the computation of intensity and the CCF at the plane of the detector are achieved by letting the detector do the integration over the total number of frames in one exposure time; mathematically, these ensemble average quantities can be written as [17]

$$I_k(r, \theta) = E_k(r, \theta)E_k^*(r, \theta),$$

(3)

$$\chi_k(r, \theta) = \text{Re}\{E_k(r, \theta)E_k^*(r, \theta + \pi)\},$$

(4)

where for convenience we expressed both functions in cylindrical polar coordinates (r, θ) and $*$ stands for the complex conjugate.

The beam distribution at the plane of the detector is described by the ensemble average of random fields, in this case by the incoherent superposition of M realizations of the composite beam given in Eq. (2). The ensemble average intensity and the CCF at the plane of the detector are achieved by letting the detector do the integration over the total number M of frames in one exposure time; mathematically, these ensemble average quantities can be written as [17]

$$\langle I(r, \theta) \rangle = \frac{1}{M} \sum_{k=0}^{M} I_k(r, \theta),$$

(5)

$$\langle \chi(r, \theta) \rangle = \frac{1}{M} \sum_{k=0}^{M} \chi_k(r, \theta).$$

(6)

An experimental realization of the CCF given by Eq. (4) requires a measurement of the correlation between pairs of points in the field that are diametrically opposed. This can be achieved experimentally using a wavefront folding interferometer in which Dove prisms (DPs) are used to invert the beams with respect to the horizontal or vertical axis as shown in Fig. 2.

Figure 3 shows the experimental setup to digitally generate and analyze partially coherent vortex beams. To generate a partially coherent vortex beam, we employed a linearly polarized He–Ne laser source ($\lambda = 632.8$ nm) and a beam expander to shine the laser onto an SLM (HoloEye PLUTO VIS SLM with 1920×1080 pixels of pitch 8 μm and calibrated for a 2π phase shift at $\lambda = 632.8$ nm) displaying a movie at 60 Hz. Each frame of the movie contains a different hologram, each one corresponding to a different member of the ensemble generated according to Eq. (2) through the coherent superposition of $N = 500$ randomly distributed vortex beams (see Fig. 4). It is important to remark that each hologram depicted in Fig. 4 already corresponds to the superposition of the field $E_k(x, y)$ using $N = 500$ terms. In this case, we created a total ensemble of $M = 200$ members. This means that we generated a total of 200 holograms, which are computationally generated in a previous process before sending them to the SLM. A system of two lenses (L_1 and L_2) is used to select and reconstruct the field in the first diffracted order coming out of the SLM. In order to characterize the field that we constructed, we need to

Fig. 2. Schematic representation of the Dove prism. Observe that the Dove prism inverts and rotates the image. Furthermore, notice that the angle between the output of both Dove prisms is 180°.

Fig. 3. Experimental setup. He–Ne laser; BE, beam expander; L1–L2, lenses; D, iris diaphragm; SLM, spatial light modulator; BS, beam splitter; DP, Dove prism; M1–M3, mirrors; CMOS, camera.

Fig. 4. Examples of holograms displayed in the SLM. (a) shows the first frame, (b) the second frame, and (c) the last frame, for a partially coherent OV with topological charge $l = 1$.

Fig. 1. Schematic representation of partially coherent vortex beams. The blue circles show the boundaries for the vortex superposition to create one member of the ensemble.
look at the ensemble average CCF of Eq. (6), as we previously discussed. Once the partially coherent beam has been generated at the SLM, it is sent as the input to a wavefront folding Sagnac interferometer through a nonpolarizing beam splitter (BS), which divides the beam into two equal copies. Each of the two beam copies passes through a rotated DP with the orientation shown in Fig. 3 and they are eventually recombined at the same BS. Finally, the interference pattern was recorded using a CMOS sensor (Firefly FMVU-13S2C) by adjusting its frame rate to match that of the SLM, and the shutter time parameter in order for the detector to be able to integrate over 200 frames, which amounts to a total exposure time of \(\sim 3.4 \) s.

The existence of the vortex structure in a partially spatially coherent beam is evidenced as a ring dislocation in its CCF \([17,25]\). The transverse coherence length can be expressed as \([14]\)

\[
L_c = \frac{0.61\lambda}{c - d},
\]

where \(\lambda\) is the wavelength, \(c\) corresponds to the radius of the circular region where the random superposition of vortices occurs, and \(d\) is the distance to the plane of the screen where the field is observed. Furthermore, the ring dislocation radius and the radius of the region where the random vortices are uniformly distributed are related by \([17]\)

\[
\frac{R}{w} = \frac{c}{c + w},
\]

where \(w\) is the waist of the Gaussian background envelope, \(R\) is the radius of the ring dislocation in the CCF, and \(c\) is the radius of the circular region.

As stated in Eq. (8), the size of the ring dislocation radius is related to the spatial coherence properties of the beam. Note that if the value of \(c\) is increased, the transverse spatial coherence at the plane of the screen decreases, the vortex beam becomes more diffuse, the beam spread widens, and the ring dislocation radius in the CCF also increases. In order to obtain a well-defined image of the ring dislocations, we removed the interference fringes by a postprocessing Fourier filter (which consists in computing the numerical Fourier transform of the CCF), selected the first order using a Gaussian apodization, and finally computed its inverse Fourier transform. In Fig. 5, we show the experimental results for the intensities and the corresponding CCFs for a partially coherent vortex with \(l = 1\) and three different coherence lengths. From left to right, the coherence length is increased and we observe that the ring dislocation in the CCF is smaller as the coherence is increased. It should also be noted that as the coherence of the beam increases the doughnut shape intensity profile, which is characteristic of coherent vortices, starts to become evident. In order to increase (or decrease) the coherence of the beam, we generate holograms where the superposition of the random vortex beams occurs in a circular region of smaller (or bigger) radius (see Fig. 1)—in other words, we change the value of \(c\). In this sense, we are effectively changing the transverse coherence length of the beam without moving any optical element, i.e., without the use of rotating ground-glass plates or focusing lenses.

In Table 1 we show a comparison between the predicted theoretical values for the ring dislocation radius, calculated according to Eq. (8), and the experimental results. These values correspond to \(l = 1\), with a background beam waist of \(w = 0.568\) mm, which translates into 71 pixels on the SLM, considering that the pixel size is 8 \(\mu\)m. The results show very good agreement between the measured and theoretically predicted values; the percentage error is calculated as \(\frac{|R_{\text{Theory}} - R_{\text{Measured}}|}{R_{\text{Theory}}} \times 100\). It has also been shown in \([20,25,26]\) that the number of ring dislocations appearing in the CCF is in a one-to-one correspondence with the topological charge of a partially coherent OV. This feature of the partially coherent vortex was also validated with our experimental technique. The optical setup shown in Fig. 3 was also used to demonstrate the relationship between the OAM in a digitally generated partially coherent vortex and the number of ring dislocations present in the CCF. Figure 6 shows the CCF for different topological charges, \(l = 1, 2,\) and 3. For the three cases, the intensity profile on the screen is just a bright spot; however, their CCFs exhibit ring dislocations that are in a one-to-one correspondence with the topological charge. In order to change the value of the topological charge, we need to generate holograms with a random superposition of

![Fig. 5. Experimental results for different coherence lengths. From left to right, the coherence length increases. The first row shows the intensity of the beam, the second row shows the experimental CCF, the third row shows the filtered version of the CCF, and the last row shows the CCF profile along the x axis (y = 0).](image)

![Table 1. Experimental Versus Theoretical Values of the Ring Dislocation Radius](image)

<table>
<thead>
<tr>
<th>(c) [mm]</th>
<th>(R_{\text{Theory}}) [mm]</th>
<th>(R_{\text{Measured}}) [mm]</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.640</td>
<td>0.300</td>
<td>0.301</td>
<td>0.33</td>
</tr>
<tr>
<td>0.400</td>
<td>0.234</td>
<td>0.230</td>
<td>1.71</td>
</tr>
<tr>
<td>0.080</td>
<td>0.070</td>
<td>0.071</td>
<td>1.43</td>
</tr>
</tbody>
</table>
individual vortex beams all carrying the desired azimuthal index equal to l.

In conclusion, we carried out two experiments to show the generation of spatially partially coherent vortex beams using only an SLM as a digital means for their construction. This technique provides control over the transverse coherence length of a beam, as demonstrated by our first experiment showing the generation of a partially coherent vortex with varying coherence lengths for a fixed value of OAM content ($l = 1$). We observed the ring dislocation in the CCF experimentally and demonstrated that its radius is dependent on the spatial coherence of the beam. Moreover, the second experiment validates the relationship between the OAM content and the number of dislocation rings observed in the CCF, which allows a direct determination of the topological charge by counting the number of ring dislocations in the CCF. The proposed method effectively simulates the behavior of a partially coherent OV. It is a versatile technique and it also paves the way for further studies on coherence, such as the study of vector singularities in partially coherent fields in the work of Chernyshov et al. [27] or in the fields of optical communications and imaging systems where coherence plays a key role.

Fig. 6. Cross-correlation function for partially coherent vortex beams with different topological charges: (a) $l = 1$, (b) $l = 2$, and (c) $l = 3$. (d)–(f) Filtered version of the CCF in the same order. (g)–(i) CCF profile along the x axis ($y = 0$).

Funding. Consejo Nacional de Ciencia y Tecnología (CONACyT) (158174); National Science Foundation (NSF) (ECCS-1309517).

REFERENCES